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Abstract

Suppose the claims data of individual customers consist of the delay times in reporting the
claims, delay times in payments and the severities of claims. A mixture of two multivariate
power-normal (MPN) distributions and a degenerate distribution is fitted to the vector of vari-
ables consisting of the sum insured, the claim and payment records until the present time and
the outstanding claims liabilities (OCL). When the sum insured together with the claim and
payment records of a customer until the present time are given, a conditional distribution of the
OCL is derived from the fitted MPN mixture distribution. The distribution of the sum of the
OCL over the customers in a company is obtained from the conditional distributions of the OCL
pertaining to the individual customers. From the distribution of the sum of OCL, the provision
of risk margin for adverse deviation can be calculated to provide a 75% level of capital adequacy
at the company level.

Keywords: Outstanding claims liabilities; reserve estimation; multivariate power-normal dis-
tribution; individual claims data.
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1 Introduction

Outstanding claims reserves in non-life insurance is established to provide the future liability
for claims which are incurred but not reported or which have been reported but not settled. The
actuary makes use of a variety of available methods to calculate the best reserve estimate needed
for an insurer and apply a provision of risk margin for adverse deviation (PRAD).

In the literature, recently, instead of using the data aggregated in run-off triangles, some au-
thors used the individual claims data to study loss reserving. The summary given by the run-off
triangle has discarded a lot of information. Thus, it is sensible to examine instead the original
individual data on claims. The individual data consist of the delay times in reporting the claims,
delay times in payments and the severities of claims.

In the analysis based on individual data, a number of authorsmodelled the times of occurrence
of claims as a Poisson process. Jewell [4] studied the formulation of the loss reserve using report-
ing delay in continuous time. Norberg [6, 7] using position dependent marked Poisson processes
developed a mathematical framework to estimate loss reserving based on individual claims data.
Haastrup and Arjas [3] used a model which was close to that of Norberg [6]. They assumed that
the claims occurred in accordance with a Poisson process with intensity which depended on the
calendar time and the characteristics of the insured via some piecewise constant structures. Larsen
[5] illustrated the framework of marked Poisson processes with a small case study in estimating
loss reserving using individual claims data. Antonio and Plat [1] revisited the works of Norberg
[6, 7] with an extensive case study developed in likelihood based framework and implemented a
micro-level stochastic model for individual loss reserving with paid or incurred losses. Zhao et
al. [12] and Zhao and Zhou [11] proposed a semi-parametric structure for an individual claims
development from survival analysis and copula methods.

Lately, because of the popularity in big data analytics and also the flexibility of the technique,
some authors presented machine learning tools in estimating loss reserve. Wüthrich [9, 10] tried
using regression trees to obtain the claims reserves on individual claims. Gabrielli and Wüthrich
[2] used a stochastic simulation machine to study individual claims history data for individual
claims reserving.

In this paper, we study the claims data of individual customers. In Section 2, we present the
claim timeline. A description of the individual claims data is given in Section 3. In Section 4
we introduce the procedure of estimating the claims reserve. Section 5 provides some numerical
results. Finally, Section 6 concludes the paper.

2 Claim Timeline

Assume that a premium is paid at time 0 for an insurance protection during the period (0, T ].
Suppose an accident occurs at the time ta < T and is reported at time tr ≥ ta. After time tr, the
company starts to collect information about the accident. Thus, after time tr, the claim process
will begin. The claim process will typically consist of

1. The times when the claims are reported.

2. The times when the payments are made.
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3. The times when the claims amounts are adjusted.

4. The amounts involved in the above claims, payments and adjustments.

Let tc be the time when the claims process is closed.

3 Individual Claims Data

LetNs be the number of individual customers under consideration in the estimation of reserve.
To record the individual claims data for the j-th customer (1 ≤ j ≤ Ns), we may first take note of
the number nj of occurrence of the event given by claim (C), payment (P ) or adjustment (D) until
the present time. If nj = 0, then we take note of the sum insured Sj and use Aj to denote the total
amount paid to the insured from the time occurrence of the nj-th event until tc. If nj ≥ 1, then
for the i-th event which has occurred, we take note of the time tji elapsed before the occurrence of
the event after time tr or after the time of occurrence of the (i − 1)-th event, and the amount Aji

of claim/payment/adjustment involved. The following codes may be used to indicate the type of
event which has occurred:

Table 1: Codes for type of event.

eji1 eji2

Claim 0 1
Payment 1 0
Adjustment 0 0

Again, we use Sj to denote the sum insured, and use Aj to denote the total amount to be paid
to the insured from the time of occurrence of the nj-th event until tc. Thus for the j-th customer,
after knowing the value of Aj and using Aj and Aji to denote Aj/Sj and Aji/Sj respectively, the
complete data recorded may be expressed as Gj = (Sj , Aj) if nj = 0, or

Gj = (Sj , ej11, ej12, tj1, Aj1, ej21, ej22, tj2, Aj2, ... , ejnj1, ejnj2, tjnj
, Ajnj

, Aj)

if nj ≥ 1.

In practice, the values of Aj are unknown at the time tjnj
and we need to estimate the reserve

given by

R =

Ns∑
j=1

Aj .

The value Aj may first be estimated based on the company’s historical data which may be
denoted as G

′

j′ = (S
′

j′ , A
′
j′) if nj = 0, or

G
′

j′ = (S
′

j′ , e
′

j′11, e
′

j′12, t
′

j′1, A
′
j′1, e

′

j′21, e
′

j′22, t
′

j′2, A
′
j′2, ... , e

′

j′nj1, e
′

j′nj2, t
′

j′nj
, A
′
j′nj

, A
′
j′)

if nj ≥ 1.

The procedure to estimate the reserve R will be introduced in the next section.
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4 Estimation of Reserve

To estimate the reserve R, we may first find a conditional distribution for Aj , 1 ≤ j ≤ Ns. If
nj = 0, then we select ns number of (S′j′ , A

′
j′) where S

′

j′ is as close as possible to Sj . Let the ns

number of selectedG
′

j′ = (S
′

j′ , A
′
j′) be denoted asG+

j+ = (S+
j+ , A

+

j+), 1 ≤ j+ ≤ ns. When nj ≥ 1,
we select ns number of G

′

j′ where S
′

j′ is as close as possible to Sj . Let the ns number of selected
G
′

j′ be denoted as

G+
j+ = (S+

j+ , e
+
j+11, e

+
j+12, t

+
j+1, A

+

j+1, e
+
j+21, e

+
j+22, t

+
j+2, A

+

j+2, . . . ,

e+j+nj1
, e+j+nj2

, t+j+nj
, A

+

j+nj
, A

+

j+)

for 1 ≤ j+ ≤ ns.

The values of G+
j+ may be arranged in the form of a table of which the j+-row contains the

4nj + 2 components in G+
j+ , for 1 ≤ j+ ≤ ns.

We sort the values of A+

j+ in an ascending order and partition the ns selected values of G+
j+

into three subsetsH+(k), k = 1, 2, 3, such that the n+
1 values ofA+

j+ inG+
j+ in the first subsetH+(1)

are all smaller than the n+
2 values of A+

j+ in G+
j+ in the second subset H+(2) and H+(3) contains

the l-th (1 ≤ l ≤ n+
3 ) largest values of A

+

j+ , and n+
1 + n+

2 + n+
3 = ns. The l-th (1 ≤ l ≤ n+

3 ) largest
values of A+

j+ may be chosen to be those which are at least 0.95. The values of n+
3 would then be

small.

Multivariate power-normal (MPN) distribution given in Pooi [8] will next be used to handle
the data in the subset H+(k), k = 1, 2. The reasons for choosing the MPN distribution are that:

1. The power-normal distribution is a very general distribution which can be used to fit data
with wide ranges of skewness and kurtosis.

2. The power-normal distribution has a probability density function which can be expressed in
an explicit form. This explicit formmakes it convenient to compute the required conditional
distributions from the MPN distribution.

For k = 1, 2, we fit anMPNdistribution to the n+
k values ofG+

j+ inH+(k), and find a conditional
distribution for A+

j+ when the value of S+
j+ is given by Sj in the case where nj = 0 or when the

value of

(S+
j+ , e

+
j+11, e

+
j+12, t

+
j+1, A

+

j+1, e
+
j+21, e

+
j+22, t

+
j+2, A

+

j+2, ... , e
+
j+nj1

, e+j+nj2
, t+j+nj

, A
+

j+nj
)

is given by

(Sj , ej11, ej12, tj1, Aj1, ej21, ej22, tj2, Aj2, ... , ejnj1, ejnj2, tjnj , Ajnj )

in the case where nj ≥ 1.

Let the first four raw moments of the k-th (1 ≤ k ≤ 2) conditional distribution be denoted as
m

(1)
k ,m(2)

k ,m(3)
k and m

(4)
k .
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With small values of n+
3 in the case when k = 3, it would be difficult to fit anMPN distribution

to the n+
3 values ofG+

j+ inH+(3). However as large values ofA+

j+ (which are in the range [0.95,1])
can occur irrespective of the sum of insured, and the width of the range [0.95,1] is small, we
may approximate the conditional distribution of A+

j+ by a degenerate distribution which assigns
a probability of one to the following average value of the l-th (1 ≤ l ≤ n+

3 ) largest values of A
+

j+

in the third partitioned subset:

m
(1)
3 =

1

n+
3

n+
3∑

l=1

(l -th largest value of A+

j+).

We note that the second to fourth moments m(2)
3 , m(3)

3 and m
(4)
3 of the above degenerate dis-

tribution are all equal to zero. Next let Pk = n+
k /ns, k = 1, 2, 3. The weighted q-th moment for Aj

can be expressed as M (q)
j =

∑3
k=1 Pkm

(q)
k S

(q)
j , 1 ≤ q ≤ 4.

The values of the above n+
1 and n+

2 are chosen as described below:

1. From the mixture distribution formed by MPN distribution fitted to the n+
k values ofG+

j+ in
H+(k), k = 1, 2, and the degenerate distribution fitted to the n+

3 values of G+
j+ in H+(3), we

find a conditional distribution for A+

j+ when the value of

(S+
j+ , e

+
j+11, e

+
j+12, t

+
j+1, A

+

j+1, e
+
j+21, e

+
j+22, t

+
j+2, A

+

j+2, . . . ,

e+j+nj1
, e+j+nj2

, t+j+nj
, A

+

j+nj
)

is given by the first 4nj + 1 components in the j+-row of the table formed by G+
j+ .

2. Find the mean Â
+

j+ of the conditional distribution yield from Step 1.

3. Choose the values of n+
1 and n+

2 such that the average
∑ns

j+=1 Â
+

j+/ns of the ns predicted
values is closest to the average

∑ns

j+=1 A
+

j+/ns of the ns observed values.

The q-th moment for R is then given by M (q) =
∑Ns

j=1 M
(q)
j . From the raw moments M (q),

1 ≤ q ≤ 4, we can compute the coefficients of skewness and kurtosis for R.

If the computed coefficient of skewness is close to 0 while that of kurtosis is close to 3, then we
may fit a normal distribution to R. The difference between the 0.75-quantile and the mean of the
distribution for R becomes approximately the value of the PRAD.

5 Numerical Results

The data forGj (1 ≤ j ≤ Ns) andG
′

j′ (1 ≤ j′ ≤ ns), used in this study are obtained by coding
the data from an insurance company in Malaysia over the period August 2002-August 2007. With
these data, we investigate the goodness of fit of the fitted MPN distributions.
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From the conditional distributions forA+

j+ when the value of

(S+
j+ , e

+
j+11, e

+
j+12, t

+
j+1, A

+

j+1, e
+
j+21, e

+
j+22, t

+
j+2, A

+

j+2, ... , e
+
j+nj1

, e+j+nj2
, t+j+nj

, A
+

j+nj
)

is given by

(Sj , ej11, ej12, tj1, Aj1, ej21, ej22, tj2, Aj2, ... , ejnj1, ejnj2, tjnj
, Ajnj

),

we find the weighted mean M
(1)
j and the 0.95-quantile of Aj .

A nominally 95% one-sided prediction interval for Aj is then given by (0, q0.95). A predicted
value of Aj is given by the weighted meanM

(1)
j of the conditional distributions for Aj .

Figure 1: The j∗-th observed and predicted values ofAj together with the 0.95-quantile of the conditional distribution forAj whennj = 0
(Ns = 500, ns = 300, estimate coverage probability = 0.9579).
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Figure 2: The j∗-th observed and predicted values ofAj together with the 0.95-quantile of the conditional distribution forAj whennj = 1
(Ns = 500, ns = 300, estimate coverage probability = 0.9730).

Figure 3: The j∗-th observed and predicted values ofAj together with the 0.95-quantile of the conditional distribution forAj whennj = 2
(Ns = 500, ns = 300, estimate coverage probability = 1.0000).
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Figure 4: The j∗-th observed and predicted values ofAj together with the 0.95-quantile of the conditional distribution forAj whennj = 3
(Ns = 500, ns = 300, estimate coverage probability = 1.0000).

Figures 1-4 exhibit the observed and predicted values of Aj together with the 0.95-quantile of
the conditional distribution for Aj . The figures show that when the number of j∗ for a given nj is
large, the observed coverage probabilities of the one-sided prediction intervals are fairly close to
the target value 0.95. Thus, we expect that the fitted distribution of Rwould give a good estimate
of the PRAD.

6 Conclusion

The estimation procedure in this research is carried out by partitioning the data into three
parts and use a mixture of two MPN distributions and a degenerate distribution to fit the data.
By controlling the sizes of the partitioned subsets of data, it is possible to reduce the influence of
extremely large claims to themean and variance of the estimate for the outstanding claims liability.

The comparison of the observed and predicted values of the outstanding claims together with
the estimated coverage probability of the prediction interval for the outstanding claims are found
to be useful for determining the performance of the reserves estimation.

However, the idea of partitioning the data into three parts of suitable sizes and using amixture
distribution to fit the data may be explored further. For example, we may consider partitioning
the data into four parts instead. To find out the suitable number of partitioned parts, wemay try to
use the criterion given by the coverage probability and average length of the prediction intervals
for the outstanding claims.

Another area of future research is the inclusion of the characteristics of the individual cus-
tomers to achieve possible further improvement in estimating the reserves.
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